ज

مثال ا. معادلههاى زير را به روش تجزيه حل كنيد.
x ${ }^{r}-9 x=\cdot$ (الف
$r x^{r}=x+r$ ($ب$
حل: الف) اين معادله به شكل استاندارد و در قالب
 زير تجزيه كرد:
$x^{r}+9 x=$.
$x(x+9)=$.
با استفاده از خاصيت حاصلضرب صفر، هر عامل را مساوى صفر قرار مىدهيم و معادلات درجأ اول حاصل

ا. حل يك معادلهٔ درجهٔ دوم توسط تجزيه
 نوشــته شــود، ممكن است سمت حـر

 صفر" (اگر •ab=، آن كاه aa= يا

 جوابهاى معادلئ درجأ دوم را بهدست آوريم. مثال زير را در نظر بگيريد.

This equation has only the repeated solution $\frac{1}{3}$. The solution set is $\left\{\frac{1}{3}\right\}$.

New Work PROBLEMS 11 AND 21

The Square Root Method

Suppose that we wish to solve the quadratic equation
$\mathrm{x}^{2}=\mathrm{p}$ (2)
where $\mathrm{p} \geq 0$ is a nonnegative number. We proceed as in the earlier examples.
$\mathrm{x}^{2}-\mathrm{p}=0 \quad$ Put in standard form.
$(\mathrm{x}-\sqrt{\mathrm{p}})(\mathrm{x}+\sqrt{\mathrm{p}})=0$ Factor (over the real
numbers).
$\mathrm{x}=\sqrt{\mathrm{p}}$ or $\mathrm{x}=-\sqrt{\mathrm{p}}$ Solve.
We have the following result:
If $x^{2}=p$ and $p \geq 0$, then

$$
\mathrm{x}=\sqrt{\mathrm{p}} \quad \text { or } \quad \mathrm{x}=-\sqrt{\mathrm{p}} .(3)
$$

When the left side factors into two
linear equations with the same solution, the quadratic equation is said to have a repeated solution. We also call this solution a root of multiplicity 2 , or a double root.

تر جـمه بر ای دانش آموز

(از اينجا به بعد را شما تر جمه كنيد و براى ما ارسال كنيد.)

EXAMPLE 2:

Solving a Quadratic Equation by Factoring
Solve the equation: $9 x^{2}-6 x+1=0$

Solution

This equation is already in standard form, and the left side can be factored.

$$
\begin{aligned}
& 9 x^{2}-6 x+1=0 \\
& (3 x-1)(3 x-1)=0 \\
& \text { so } \\
& x=\frac{1}{3} \text { or } x=\frac{1}{3}
\end{aligned}
$$

لغات و اصطلاحات مهمم

1. Solve حل، حل كردن
2. Quadratic درجئ دون
3. Quadratic equation معادلئ درجه دوم
4. Factoring تجزيه
5. Specified تخصيصيافته
6. Standard form شكل استاندارد
7. First-degree درجئ اول
8. Adding اضافه كردن
9. Double root ريشٔ مضاعف
10. Linear equation معادلئ خطى مخـ
$r x-r=\cdot$ ي $x+1=$ •

$$
x=\frac{r}{r} \quad x=-1
$$

$$
\text { مجموعئ جواب }\left\{-1, \frac{r}{r}\right\} \text { است. }
$$

هر گاه ســمت چֶپ معادله بــه دو معادلئ خطى با
جوابهــاى يكســان تجزيه شــــود، مى گوييـــم معادلـا

$$
\text { مىناميم. } \quad(Y x-r)(x+1)=\cdot
$$

1. Solve a Quadratic Equation by Factoring

When a quadratic equation is written in standard from $a x^{2}+b x+c=0$, it may be possible to factor the expression on the left side into the product of two first-degree polynomials. Then, by using the Zero-Product Property and setting each factor equal to 0 , we can solve the resulting linear equations and obtain the solutions of the quadratic equation.

Let's look at an example.

EXAMPLE 1:

Solving a Quadratic Equation by Factoring

Solve the equation:
(a) $x^{2}+6 x=0$
(b) $2 x^{2}=x+3$

Solution

(a) The equation is in the standard form specified in equation (1). The left side may be factored as

$$
\begin{aligned}
& x^{2}+6 x=0 \\
& x(x+6)=0 \quad \text { Factor. }
\end{aligned}
$$

Using the Zero-Product Property, we set each factor equal to 0 and then solve the resulting first-degree equations.
$x=0$ or $x+6=0$ Zero-Product Property
$x=0$ or $x=-6$ Solve.
The solution set is $\{0,-6\}$.
(b) We put the equation $2 x^{2}=x+3$ in standard form by adding $-\mathrm{x}-3$ to both sides.
$2 x^{2}=x+3$
$2 x^{2}-x-3=0$ Add $-x-3$ to both sides.
The left side may now be factored as
$(2 x-3)(x+1)=0$ Factor.
so that
$2 \mathrm{x}-3=0$ or $\mathrm{x}+1=0$ Zero-Product Property
$x=\frac{3}{2} \quad x=-1$ Solve.
The solution set is $\left\{-1, \frac{3}{2}\right\}$.

